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High-order moments of Reynolds shear stress 
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(Reoeived 1 June 1972 and in revised form 24 October 1972) 

The cumulant-discard approach is used to predict the third- and fourth-order 
moments and the probability density of turbulent Reynolds shear stress fluctua- 
tions uv, the streamwise and normal velocity fluctuations being represented by u 
and v respectively. Measurements of these quantities in a turbulent boundary 
layer are presented, with the required statistics of uv obtained by the use of 
a high-speed digital data-acquisition system. Including correlations between u 
and u up to the fourth order, the cumulant-discard predictions are in close 
agreement with the measurements in the inner region of the layer but only 
qualitatively follow the experimental results in the outer intermittent region. 
In  this latter region, predictions for the third- and fourth-order moments of uu 
are also obtained by assuming that the properties of both turbulent and irrota- 
tional fluctuations are Gaussian and by using some of the available conditional 
averages of u, v and uv. 

1. Introduction 
Recent investigations by Frenkiel & Klebanoff (1967), Van Atta & Chen 

(1968) and Van Atta & Yeh (1970) have attempted both to measure and predict 
some of the higher order moments of the streamwise velocity fluctuations in the 
turbulent; flow downstream of a grid. Frenkiel& Klebanoff and Van Atta & Chen 
have shown that, although some of the higher even-order correlations at two 
points separated in time are quite closely predicted by assuming a Gaussian 
joint probability density, the successful prediction of the odd-order correlations 
requires the use of a non-Gaussian Gram-Charlier probability density. Van Atta 
& Yeh (1970) have found that, while the measured even-order correlations at 
four points separated in time may be quite closely predicted by the joint-Gaussian 
hypothesis, the generalized Gram-Charlier densities are required to describe the 
odd-order three-point correlations. 

The present work is concerned with predicting some of the measured third- 
and fourth-order correlations of the important Reynolds shear stress fluctua- 
tions uv in a turbulent boundary layer. In  a previous report (Antonia & Luxton 
1971b), some of the characteristics of the streamwise fluctuations u, the normal 
fluctuations v and of the product uv in a turbulent boundary layer were examined 
in the light of current boundary-layer knowledge. In  a first attempt to predict 
some of the higher order moments of uv it was assumed that the joint probability 
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density of u and v was Gaussian, but this led to generally unsatisfactory predic- 
tions for the skewness and flatness factors of uv. Here, the cumulant-discard 
approach outlined in 5 2 is used as a convenient way to include the non-Gaussian 
behaviour of u and v. The resulting predictions are compared with the measured 
skewness and flatness factors of uv in both smooth- and rough-wall boundary 
layers. The rough-wall results are included because, for the particular roughness 
geometry used, the characteristics of uv in the vicinity of the surface are markedly 
different from those observed near the smooth wall. The probability density 
derived by doing an inverse Fourier transform on the characteristic function 
used to define the cumulants is the same as the Gram-Charlier representation 
assumed by Frenkiel S: Klebanoff and others. This probability density is com- 
pared with the experimental distributions in $4.  

Predictions for the third- and fourth-order moments of uv in the intermittent 
region of the layer are derived in $ 5  by assuming that the intermittency charac- 
teristics of the flow are known. Because of the limited data available on con- 
ditional averages of u, v and uv it is assumed that both turbulent and irrotational 
fluctuations are independent Gaussian stationary random variables. 

2. Skewness and flatness of uv by cumulant discard 
If u and v are two random variables, their statistical properties are specified 

by their joint probability density pU,(u, v) or alternatively (see, for example, 
Lin 1967, pp. 26-30) by their joint characteristic function M,,, which is the 
double Fourier transform of pU,(u, v) : 

The coefficient of <jqk in the above series expansion is (ij+k/j! k!)mjk, where mik 
represents the moment uW. It is more convenient to use, instead of the moments 
mjk, the cumulants or semi-invariants kjk defined by 

- 

If the exponential of both sides of (2) is taken and the resulting coefficients of 
&jjrk  compared with those in (1) some of the main relations between the mi, and 
kjk (for j ,  k < 4) become, when u and v have zero mean and are normalized by 
dividing by their respective standard deviations, 

- mil = tu = r ,  

mZ2 = w2 = k,, + 2r2 + 1, 

m33 = w3 = k33 + k3ok03 + 9k21 k, ,  + 3kI3 + 9 ~ k , ~  + 3k,, + 9r + 6r3, 

m30 = k30, m2, = k,,, m40 = k40 + 3, m31 = k,, + 3r, 
- 

- 
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where w stands for the product zcv and r is the usual correlation coefficient. One 
reason for the usefulness of the cumulants can be seen by studying the case 
where u and v are Gaussian, so that their joint density has the form 

puv(u, v) cc exp [ - (allu2 + aI2uv + a2,v2 + a lu  + a2v)l ,  

i.e. the exponential of a second-order polynomial in u and v. Then its Fourier 
transform &&, 7) will also have this form, so that In xv will be a second-order 
polynomial in 6 and 7. This means that all the kij except k,,, k,,, k,,, k,, and k,, 
will be zero. If, on the other hand, u and v are not Gaussian, the magnitude of 
these kij  can be used as a measure of the non-Gaussianity. In  particular, in the 
normalized case where k,, = I, k,, is the skewness of u and k, is its coefficient 
of excess (the flatness factor is k,, + 3). Since moments of u and v of order higher 
than four are seldom measured, the statistics of u and v are not completely 
determined. In  order to proceed further some assumption concerning the un- 
specified k, is necessary. Provided that the departures of u and v from Gaussianity 
are not too large, a reasonable assumption appears to be that all Icij  for i and j 
greater than 4 are zero. Using relations (3), it is easy to show that the standard 
deviation v, skewness S and flatness factor P of the centred variable w - W are 
given by 

(r = [(w-W)2]4 = (1+k2,+r2)-4 (4) 

and 

+ 36(k:, + k;,) + l2rk3,ko3 + 1O8rk,1kl, + 3(k0, + k4,) + 36r(kI3 + k31) 

+ k2,(42r2 + 36) + 9r4 + 42r2 + 9]/( 1 + k,, + r2),. (6) 

In  the special case where only the skewnesses and flatness factors of u and v 
and the correlation coefficient r are retained, (5) and (6) reduce to 

It is worth noting that the skewness S is independent of k,, and k,, while, for 
small values of r, the flatness factor F is only weakly dependent on Ic,, and kO3, 
the skewnesses of u and v respectively. 

3. Comparison with experimental results 
Measurements were made in both a smooth-wall and a rough-wall boundary 

layer a t  a free-stream velocity of approximately 5.5 mjs. The boundary layers 
developed in a zero pressure gradient and were approximately self-preserving 
at  the station of measurement. The roughness surface consisted of strips of 



584 R. A .  Antonia and J .  D. Atkinson 

0.318 em square cross-section spanning the full width of the working section 
floor and placed at a streamwise pitch of 1.27 em. At the measuring station, the 
boundary layer had a 99.5 yo thickness of 5.0cm over the smooth surface and 
of 7.1 ern for the rough surface condition. 

The signals from an X-wire operated by two channels of nonlinearized constant- 
temperature anemometers were first passed through carefully matched 1 kHz 
cut-off low-pass filters then sampled at  a frequency of 3 kHx (per channel) before 
being digitally recorded. The digital tape was subsequently processed on an 
English Electric KDF9 computer in the University of Sydney to yield as one of 
the first steps in the computation the required u and v signals as well as the 
product uv. The integral moments un, vn and urn@ were obtained directly from 
the digital records (of approximately 10s duration) and not by forming the 
weighted integrals of the also-computed probability densities of u, v and uv. 
Despite the relatively short length of record used, the dispersion of the data for 
integral moments considered here was found to be small (less than 10%). The 
nonlinearity of the anemometer was found to affect the skewness of u only for 
the points closest to the wall (yU,/v < 100) but does not affect the skewness of v 
or the flatness factors of u and v. It therefore seems likely that the skewness of 
uv and, to a lesser extent, the flatness factor of uv may be slightly affected in the 
region close to the wall. Further details on flow conditions, surface geometry and 
data reduction may be obtained from Antonia & Luxton (1971 a) .  

The measured skewnesses and flatness factors of uv - ZLV across the boundary 
layer are presented in figures 1 and 2 together with the predictions from (5) and 
(6), which make use of some of the measured moments of un, vn and umvn up 
to the fourth order. The correlation coefficient r shown in figures 1 and 2 remains 
essentially constant over most of the extent of the layers, so that the assumption 
of a Gaussian joint probability density pUa (i.e. retaining only terms involving r 
in relations (5) and (6)) would be essentially inadequate for predicting P and S. 
In the vicinity of the smooth wall, the measured flatness factor P of uv-iii 
(figure 1 (a ) )  increases as the wall is approached.? The F predicted from (6) follows 
the experimental trend quite closely but (6 a )  predicts only a small increase in F 
owing to the observed slight rise in the flatness factors of u and v in this region 
of the flow. For y/6 less than about 0.15 the skewness S predicted by (5) follows 
the experimental distribution (figure 1 ( b ) )  closely but (5a)  shows a noticeable 
departure. In  the region of the layer corresponding to 0.15 < y/6 < 0.30, the 
characteristics of u and v are very nearly Gaussian and ( 6 a )  only slightly under- 
estimates F whilst the AS predicted from ( 5 a )  is essentially in accord with the 
experimental results and with the prediction of (5). In  the intermittent region of 
the layer, relation (6) overestimates P, the departure from the experimental 
distribution becoming more marked with increasing y/6. Equation (sa),  on the 
other hand, significantly underestimates 3’. Analogous behaviour for the S 
predicted from (5) and (5a )  is observed in figure 1 ( b ) .  In  this outer region of the 

t Recent measurements by Gup-ta & Kaplan (1972) show that P reaches a value at  
high as 100 well within the sublayer (yU,/v N 4, U, being the friction velocity). This result 
together with some instantaneous records of uv obtained by Willmarth & Lu (1972) as 
yU,/v = 30 suggest that the uv signal is clearly intermittent in the viscous sublayer. 

- -  - 

_ _  - 
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FIGURE I. (a)  Flatness factor and (b)  skewness of uw in smooth-wall boundary layer. 
- - _ -  , prediction of model described in $ 5  using data of Kovasznay et al. (1970). 
(a) 0, experiment; - , equation (6); --- , equation ( 6 4 ;  ---, experimental r. 
(6)  0, experiment ; -, equation (5) ; - - -, equation (5a). 

layer, the characteristics of zc and u depart quite significantly from the Gaussian 
ones, the flatness factors of u and v reaching values close to I 0  for y/S near 1.0. 
It is unlikely that the fourth-order model leading to (5) and (6) is suitable for 
describing the characteristics of uv in this part of the flow. 

In  contrast with the smooth-wall results, the rough-wall distributions of F 
and S show a respective decrease and increase with proximity to the surface. 
Equations ( 5 ) ,  ( 5  a), (6) and (6 a) are essentially in agreement with the experimental 
results. In  the outer part of the layer, (6a )  again underestimates F while (5a)  
overestimates X. Surprisingly, the predictions from ( 5 )  and (6) represent a 
reasonable approximation to S and F respectively in the outer region of the 
rough-wall layer. Little trust can be placed on this agreement however as the 
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FIGURE 2. (a) Flatness factor and (b)  skewness of uv in rough-wall boundary layer. 
(a) 0, experiment; ~ , equation (6) ; - - -, equation (6a) ; -. - , experimental r.  
(b)  , experiment ; __ , equation (5) ; - - - , equation (5a) .  

deletion of the cross-correlation terms involving k22, k,, and k,, produces sig- 
nificant variations in the predicted F (see figure 3) and also 8, at least for y/S 
greater than 0-4. In  the inner region of the layer, the predictions are not sensitive 
to the inclusion of some of the cross-correlation terms. It seems clear that, for 
the outer region of the layer, higher order terms must be included in the analysis 
of $ 2  before the fourth-order moment of the product uv can be predicted to 
within the accuracy of available experimental datat. An alternative approach 
for the predictions of S and F in the intermittent zone of the flow, and one that 
seems more justifiable physically, is given in § 5 .  

t It should be noted that even for the weakly non-Gaussian turbulence obtained down- 
stream of a grid, a sixth-order model for the joint probability density of the streamwise 
velocity fluctuations at two points separated in time is required for close agreement with 
tho experimental time hyper-flatness factor (Frenkiel &. Klebanoff 1967; Van Atta 85 
Chen 1968). 
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FIGURE 3. Effect of kaa, k,, and k,, on the flatness factor of uv. -, equation (6) with 
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4. Probability density of uv 
The probability distribution P, of the product w = uv is given by 

Differentiating with respect to w yields the probability density pw: 

However, according to equation (2) for normalized u and v, 

~,,(t, 7) = exp [ - +(F + 2 r ~ 7  + 72) + . x k,, . 
3 + k > 2 J .  k. 

Equation (7) can be evaluated if MUD is expanded in either of two ways: 

00 

(i) M,,(t,r) = exp [ - &(t2 + q2)] X C,, ij+ktj;irk; 
, ,k=O 
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FIGURE 4. Probability density of uv. 0, experiment ; -, equation (1 1) ; - -, equation (12). 
(a)  Rough wall, y/S = 0.071. (b)  Rough wall y/S = 0.57. (c) Smooth wall, y/S = 0.632. 

Here Cj, is the coefficient of xjy, in the power-series expansion of 

so that 
coo = 1, Cl0 = c20 = 0, c,, = r,  c3, = Qk30, c2, = &k2,, 

c&l = Ah&), c31 = Qk31, c22 = i k 2 2 +  Sr2 ,  
together with the corresponding expressions with j and k interchanged. Similarly, 

Do, = 1, Djk = 0 for j+k = 1 ,2 ,  Djk = k j J j ! k !  for j + k  = 3,4 ,5 .  

The probability densities corresponding to (i) and (ii) can be found by doing the 
Fourier inversion term by term. Expression (i) yields the Gram-Charlier dis- 
tribution 

puJu, v) = Cjk H e j @ )  He,(v) exp ( - i u 2  - #v2), (8) 
27Ti+k 
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where the Hej(u)  are Hermite polynomials. Expression (ii) yields the generalized 
Gram-Charlier distribution 

Substituting (8) into (7) and using the symmetry of Hej(u)  (even for even j, 
odd for odd j) leads to  

which is an infinite series of terms of the form 

Using relation (4.5.29) from p. 146 of Erddyi (1954) i t  may be shown that 

4, = WmlWl~(l-m)KJ(z-,,(IWI), 

where K is the modified Bessel function of the second kind. Substitution of this 
result into (10) and making use of the Bessel function recurrence relations leads, 
after some manipulation, to 

P d W )  = 1rr-1Ko(lw1)((1+cz2+3C,f3C04) +w(c,,-3c3,-3c13) 

+w2 (c40+c04+c22)}+7T-11wI Kl(lwl) (-2(c22+ 2c40+ 2c04) +w(c31+c13)}, 

(11) 

where cjk terms of order only up to four have been included. The corresponding 
result using the generalized Gram-Charlier distribution (9) is 

rw 
(D40+D,4)-r(7+r2)(DSlf013) +2(1 +4r2)D22}+- 

x {4(i+r2)D(40+D04+D22)-~r-1(l +6r2+r4) (D31+ = 13 )I]} . (12) 

When all the Dii are set equal to zero the above expression reduces to the form 
corresponding to the assumption of a Gaussian joint probability density puv. 

Expression (1 1) is compared in figure 4 with a few of the computed probability 
densities. In the rough-wall layer a t  y/6 = 0.07 1 (figure 4 (a)) relation (1 1) is in 
good agreement with the experimental points. The result of (12) is virtually 
identical with that of (11) and has not been shown in figure 4(a ) .  At y/6 = 0-57 
on the rough wall (figure 4 ( b ) )  and at y/6 = 0.62 on the smooth wall (figure 4 (c)) 
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the predicted frequency of occurrence from (1 I )  of moderately small negative 
values of w is appreciably smaller than the experimental distribution, but for 
the larger negative values of w expression (1 1) lies slightly above the experimental 
curve. Not unexpectedly, since its rate of convergence is faster, equation (12) 
represents a slightly better prediction for the experimental curves of figures 4 ( b )  
and (c). 

5. Properties of uv assuming intermittency 
An alternative approach for the predictions of X and P in the intermittent 

zone of the flow is to assume that the probability densities of u and v are made 
up of the sums of the densities of these variables in the turbulent and irrotational 
parts of the flow, which is effectively an assumption of independence for the 
occurrence of these two states. Conditionally sampled measurements presented 
in Antonia (1972) indicate that the probability densities of u and v in both the 
turbulent and non-turbulent parts of the flow are close to  being Gaussian. With 
less justification, we shall also assume that these two parts of the flow form 
stationary processes, so that their probability densities are independent of time, 
the instantaneous distance to the turbulent-non-turbulent interface, and so on. 
Because of the lack of experimental data, some such assumptions must be made. 
Data assumed known are the intermittency factor y (the fraction of time for 
which the flow is turbulent) and the means and fluctuation intensities of u and 
w in both turbulent and non-turbulent zones of the flow. 

The joint probability density of u and v is given by 

P U V @ ,  V) = yP% v) + (1 - Y)PN(% v), 

where pT and p N  are Gaussian distributions and the superscripts T and N denote 
turbulent and non-turbulent regions respectively. Multiplying by d w k  and 
integrating gives - 

mi, = ujv” = ymg+(I-y)rnK. 

In  the case where u and v have zero mean 

ym~+( i - y )m;Y ,  = ym&+(I -y)mg = 0, 

m,T, = (I-ylpu, 4 = -YPu, md = ( l -y)pv,  m% = -YPw 

whence 

where pu = mg - rng and p,, = m,T, - m& i.e. ,u represents the difference between 
turbulent and non-turbulent means. In  a turbulent boundary layer the con- 
ditionally sampled measurements of Kovasznay, Kibens & Blackwelder ( I  970) 
show that ,au and p,, reach maximum values of - 5 yo and 2.5 yo respectively 
of the free-stream velocity. If n,T, a: and rT and g$, c$‘ and rN represent the 
standard deviations and correlation coefficients of u and v relative to the appro- 
priate means in the T and N states respectively, we have 
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FIGURE 5 .  (a) Skewness and ( b )  flatness factor of uu in intermittent region of a shear flow. 
0, mixing-layer data (Wygnanski & Fiedler 1970). Boundary-layer data (Kovasznay 
etal. 1970;BlackweIder 1970):-,kv/kw = O-S;--- ,k , /k ,  = l - O ; - - -  , k,lk,, = 1.4. 

SincepT andpN are Gaussian, all their moments of order three and higher depend 
on those of orders one and two. These relations can be obtained by repeated 
integration by parts or by using cumulants. In  particular, from ( 3 ) ,  

m$ = m$m$ + 2mE2 - 2m,, T2 m,, T2 , 

mg = 3mg(3m$m& + 2mg2) - 6m,',mZ 

m z  = 3(3m52m&2 + 24rngmFmg + 8mE3) - 6(%%2mg4 +mg2mG4) 

x (m2';moI;" + 3msm$mf+ m&mG2) + 16m$m53, 

- 9 6 m ~ m $ m ~ ( m $ m g 2  +mgmg2) - 72mgzm$2(m$mg + 2mS2) 
+ 32mg2m$2(3m$mg2 + 8mSrn$md + 3mgmE2) - 132m$4m,T,4, J 

together with the same equations with superscript N .  The first four cumulants 
of uv may be found using 

k, = m,,, k, = rnz2 - m?,, k, = m,, - 3m m 

k, = m,, - 3m& - 4m3,m,, + 12mz2m~, 22 - 6m&. 11+2m7 
The standard deviation, skewness and flatness factor of uv are then given by 

Cr,, = @, suv = k3/vtv, FUv = k 4 / e V  -!- 3 .  

Wygnanski & Fiedler (1970) used the conditional sampling 6echnique in the 
mixing layer of a two-dimensional jet to obtain the turbulent and irrotatjonal 
averages of u, v and uv, and of the intensities of u and v. The experimental values 
of y ,  p,, pv, g:, CT?, rT,  g$, C T ~  and rN in the high-speed side of the mixing layer 
have been used in the relations (I) ,  ( 2 )  and ( 3 )  to obtain the skewness and flatness 
factors of uv shown in figures 5 (a)  and (b). 

Corresponding conditionally sampled measurements in a zero-pressure- 
gradient turbulent boundary layer are available in Kovasznay et al. (1970) and 
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Blackwelder (1970). Unfortunately, cr: and crf are not presented in these 
references. An attempt to estimate C T ~  (and hence .a‘ as mO2 is known) was made 
by a,ssuming that 

where k, and k, are constants, yo is the apparent origin of the fluctuations and 
U, and 6 represent velocity and length scales respectively of the large energy- 
containing scale of the motion. The form of the above expressions was first 
predicted by Phillips (1955), who showed it to be asymptotically correct at  large 
values of y/S. A rather large amount of experimental evidence has however 
verified the existence of this form at quite small values of y/S but the value of 
yo/& is ill-defined (Bradshaw 1967), whilst the constants k, and k,, have been found 
to vary from flow to flow and appear to depend on experimental conditions for 
any given flow. Bradbury (1965) finds an average value for kvllc, in a two- 
dimensional jet jn a slowly moving free stream of about 2.5, Bradshaw (1967) 
obtains a value close to 1-0 for a strongly retarded boundary layer whilst the 
mixing-layer results of Wygnanski & Fiedler (1970) indicate a value as high as 
3.8. The results of figure 5 show that a value for this ratio close to or slightly 
smaller than 1.0 will yield a distribution of 2;” in reasonable agreement with the 
distribution derived from the data of Wygnanski & Fiedler (1 970). A slightly 
higher and probably more plausible value of k,/k, (Phillips (1955) predicts that 
v2 = u2 + wz) leads to an implausible decrease in F and 1 S 1 towards the edge of 
the layer. 

The resulting predictions for E” and S using the data of Kovasznay et al. (1970) 
with kv/ku = 0.8 are shown in figures l(a) and ( b )  for comparison with the 
predictions of (2). For y/S > 0.65, the predictions of the intermittent model 
qualitatively follow the experimental distributions but clearly underestimate 
P and 1x1, whereas the predictions of the fourth-order non-intermittent model 
presented in 5 2 had clearly overestimated P and IS1 . For y/S < 0.4 (y has a value 
of 1 near y/S = 0*4), the predictions of the intermittent model should agree with 
the values of P and S given by relations (5 a) and (6 a) for ks0 = k,, = k, = kO4 = 0. 
These latter values are also shown in figure 1. The poor quantitative agreement 
between the intermittent-model predictions and the experimental data in the 
outer layer must be partly attributed to the non-Gaussianity of the velocity 
fluctuations in both the turbulent and non-turbulent parts of the flow and also 
to the uncertainty in the conditional data caused by the somewhat subjective 
formation of the intermittency function (see for example Kovasznay et al. 1970). 
The inclusion of the higher order (non-Gaussian) terms in the intermittent model 
should be straightforward but before this is attempted reliable conditionally 
sampled measurements are required. 

- - -  

6. Conclusions 
The expressions for the skewness and flatness factor of uv derived by dis- 

carding cumulants of order greater than four are in good agreement with the 
experimental results in the inner regions of smooth- and rough-wall boundary 
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layers. In the outer intermittent regions of the layers, relations (5) and (6) only 
qualitatively follow the experimental results. The predictions of X and F obtained 
for the intermittent regions by assuming Gaussian properties for the turbulent 
and irrotational fluctuations are not a significant improvement on the predictions 
of the fourth-order non-intermittent model. As the departures from Gaussianity 
of these fluctuations are not expected to be large, it is expected that a modified 
intermittent model should be adequate for predicting high-order moments of uv 
in the outer region of the boundary layer. 

The work described in this paper represents part of a programme of research 
supported by the Australian Research Grants Committee, the Australian 
Institute of Nuclear Science and Engineering, and the Commonwealth Scientific 
and Industrial Research Organization. 
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